字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者&題名查詢臺灣博碩士以作者查詢全國書目
研究生中文姓名:陳韻安
研究生英文姓名:Chen, Uyn-An
中文論文名稱:耐力運動訓練對於糖尿病鼠心肌自噬作用的影響
英文論文名稱:Effects of endurance exercise training on Cardiac Autophagy in STZ-induced DM Rats
指導教授姓名:蔡秀純
學位類別:碩士
校院名稱:臺北市立大學
系所名稱:運動科學研究所
論文出版年:103
畢業學年度:102
語文別:中文
中文關鍵詞:心血管疾病纖維化Atg12LC3Connexin 43
英文關鍵字:cardiovascular diseasefibrosisAtg12LC3Connexin 43
相關次數:
  • 推薦推薦:0
  • 點閱點閱:442
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:2
  • 收藏收藏:0
糖尿病是21世紀盛行的慢性代謝性疾病之一,因此疾病引起之心血管併發症為目前糖尿病致死之主要危險因子。許多研究證實,透過運動訓練,可降低糖尿病及心血管疾病之罹患率,並有助於改善糖尿病胰島素阻抗現象及心血管功能。然而,目前由心肌之自噬作用之路徑探討糖尿病鼠透過運動訓練改善心肌損傷及心臟收縮功能之研究尚未完整。因此,本研究藉由觀察心肌之自噬蛋白表現、心肌損傷蛋白之指標及心臟收縮功能,探討運動訓練對於糖尿病鼠心臟自噬作用之影響。將九週齡之Sprague-Dawley (SD) 雄鼠隨機分為3組:控制組 (CON),糖尿病靜態生活組 (DM) 及糖尿病運動組 (DM+EX)。大鼠糖尿病模式係於10週齡時以每公斤體重注射50毫克streptozotocin (STZ) 誘發糖尿病。糖尿病運動組於11週齡給予連續4週的耐力跑步訓練後,所有動物於15週齡進行心臟超音波檢測,超音波檢測參數有:左心室內徑、左心室壁厚度、射血分率、心搏量等。所有動物於15週斷頭犧牲,取其心臟組織記錄全心重量及左心室之重量,並採部分組織做組織包埋及生化分析。以西方墨點法 (Western blot) 分析心肌中自噬作用 (Beclin1、Atg5、Atg12、LC3) 、心臟收縮功能 (Connexin-43) 及細胞凋亡 (Caspase 3、Bcl-2) 之相關蛋白表現。所有數據均以Mean ± SEM表示,先以one-way anaysis of variance (one-way ANOVA) 進行資料分析,若呈現顯著,則繼續以Duncan’s post-hoc測驗法分析組間平均值的差異,以p<0.05視為顯著水準。結果顯示,糖尿病大鼠介入運動訓練,心肌纖維化程度顯著低於糖尿病組約35%,並顯著增加約1倍之心肌收縮蛋白之表現量。自噬作用相關蛋白檢測結果顯示,LC3在運動訓練後,顯著低於糖尿病組約40%。而在p-BCL-2與Caspase-3比值結果顯示,運動介入顯著降低了糖尿病大鼠心肌中凋亡蛋白之表現約40%。本研究的結論是,耐力運動訓練透過抑制糖尿病心肌中之自噬蛋白及凋亡路徑蛋白表現,改善心臟收縮功能及心肌細胞之排列,並降低心肌纖維化面積。
目錄

原創聲明書.......................................................…………………….………...…ii
學位考試審定書……………………………………………………………......iii
中文摘要………………………………………………………………………...v
英文摘要…………………………………………………………………...….vii
謝誌………………………………………………………………...…………ix
目錄……………………………………………………………………………x
表目錄…………………………………………………………………………xiii
圖目錄…………………………………………………………………………xiv
第壹章 緒論…………………………………………………………………….1
第一節 研究背景…………………………………………………………..1
第二節 研究假設…………………………………………………………2
第三節 研究目的…………………………………………………………2
第貳章 文獻探討……………………………………………………………....3
第一節 糖尿病………………………………………...….........................3
第二節 自噬作用…………………………………………………………7
第三節 耐力運動訓練……………………………………………………12
第參章 研究方法 …………………………………………………………...16
第一節 實驗動物飼養方法………………………………………………16
第二節 實驗設計………………………………………………………16
第三節 實驗流程………………………………………………………17
第四節 運動訓練設計…………………………………………………18
第五節 實驗材料與樣本分析…………………………………………18
第六節 資料統計與分析………………………………………………22
第肆章 實驗結果……………………………………………………………23
第一節 耐力運動訓練對於SD大鼠及STZ誘發糖尿病之大鼠心
臟收縮、舒張生理指標及功能影響…………………………...23
第二節 耐力運動訓練對於SD大鼠及STZ誘發糖尿病之大鼠體
重、血糖、心臟、左心室重量的影響……………………………23
第三節 耐力運動訓練對於SD大鼠及STZ誘發糖尿病之大鼠
心肌LC3及自噬作用相關蛋白表現量之影響………………24
第四節 耐力運動訓練對於SD大鼠及STZ誘發糖尿病之大鼠心肌
凋亡相關蛋白表現量之影響……………………………………25
第五節 耐力運動訓練對於糖尿病大鼠心肌收縮蛋白表現之影響耐…26
第六節 運動訓練對於SD大鼠及STZ誘發糖尿病之大鼠心肌
細胞結構及纖維化之影響.............................................................27
第伍章 討論.......................................................................................................29
第一節 STZ誘導之糖尿病大鼠對其心臟重量、左心室重量的影
響………………………………………….................................29
第二節 耐力運動訓練對於糖尿病大鼠心肌結構及纖維化之影響........30
第三節 耐力運動訓練對於糖尿病大鼠心臟功能之影響........................31
第四節 糖尿病與心室肥大........................................................................32
第五節 耐力運動訓練對於糖尿病大鼠心肌中細胞自噬及細胞凋亡之影
響...........................................................................................33
第陸章 結論.......................................................................................................37
參考文獻.......................................................................................................38
表.........................................................................................................................53
圖.........................................................................................................................54
參考文獻

Abe, T., Ohga, Y., Tabayashi, N., Kobayashi, S., Sakata, S., Misawa, H., & Takaki, M. (2002). Left ventricular diastolic dysfunction in type 2 diabetes mellitus model rats. American Journal of Physiology-Heart and Circulatory Physiology, 282, H138-H148.
Abunasra, H. J., Smolenski, R.T,, Morrison, K., Yap, J., Sheppard, M.N., O'Brien, T., Suzuki, K., Jayakumar, J., &Yacoub, M. H. (2001). Efficacy of adenoviral gene transfer with manganese superoxide dismutase and endothelial nitric oxide synthase in reducing ischemia and reperfusion injury. European Journal of Cardio-Thoracic Surgery, 20, 153-158.
Alessio, H. M., & Goldfarb, A. H. (1988). Lipid peroxidation and scavenger enzymes during exercise: adaptive response to training. Journal of Applied Physiology, 64, 1333-1336.
Ames, B. N., Shigenaga, M. K., & Hagen, T. M. (1993). Oxidants, antioxidants, and the degenerative diseases of aging. Proceedings of the National Academy of Sciences, 90, 7915-7922.
Ascensão, A., Ferreira, R., & Magalhães, J. (2007). Exercise-induced cardioprotection—biochemical, morphological and functional evidence in whole tissue and isolated mitochondria. International journal of cardiology, 117(1), 16-30.
Baynes, J. W. (1991). Role of oxidative stress in development of complications in diabetes. Diabetes, 40(4), 405-412.
Beckman, K. B., & Ames, B. N. (1998). The free radical theory of aging matures. Physiological Reviews, 78, 547-581.
Belke, D. D., Larsen, T. S., Gibbs, E. M., & Severson, D. L. (2000). Altered metabolism causes cardiac dysfunction in perfused hearts from diabetic (db/db) mice. American Journal of Physiology-Endocrinology and Metabolism, 279, E1104-E1113.
Bell, D. S. (1995). Diabetes Care, 18, 708-714
Bellafiore, M., Sivverini, G., Palumbo, D., Macaluso, F., Bianco, A., Palma, A., & Farina, F. (2007). Increased cx43 and angiogenesis in exercised mouse hearts. International journal of sports medicine, 28(09), 749-755.
Belotto, M. F., Magdalon, J., Rodrigues, H. G., Vinolo, M. A. R., Curi, R., Pithon‐Curi, T. C., & Hatanaka, E. (2010). Moderate exercise improves leucocyte function and decreases inflammation in diabetes. Clinical & Experimental Immunology, 162(2), 237-243.
Biolo, G., Tipton, K. D., Klein, S., & Wolfe, R. R. (1997). An abundant supply of amino acids enhances the metabolic effect of exercise on muscle protein. American Journal of Physiology-Endocrinology and Metabolism, 36(1), E122-E129.
Bird, J. W. (1974). Skeletal muscle lysosomes. Frontiers of biology, 43, 75-109.
Boudina, S., and Abel, E. D. (2007) Circulation, 115, 3213-3223
Bradley, B. J., Haskins, K., Larosa, F. G., and Lafferty, K. J. (1992). CD8 T cells are not required for islet destruction induced by a CD4+ islet-specific T-cell clone. Diabetes, 41, 1603-1608.
Brady, N. R., Hamacher‐Brady, A., Yuan, H., & Gottlieb, R. A. (2007). The autophagic response to nutrient deprivation in the hl‐1 cardiac myocyte is modulated by Bcl‐2 and sarco/endoplasmic reticulum calcium stores. Federation of European Biochemical Societies Journal, 274, 3184-3197.
Brownlee, MD, M. (1995). Advanced protein glycosylation in diabetes and aging. Annual review of medicine, 46(1), 223-234.
Cannizzo, B., Luján, A., Estrella, N., Lembo, C., Cruzado, M., & Castro, C. (2012). Insulin resistance promotes early atherosclerosis via increased proinflammatory proteins and oxidative stress in fructose-fed ApoE-KO mice. Experimental diabetes research, 28(5), 661-670
Centurione, L., Di Giulio, C., Santavenere, E., Cacchio, M., Sabatini, N., Rapino, C., Bianchi, G., Rapino, M., Bosco D, Antonucci A, & Cataldi, A. (2004). Protein kinase C zeta regulation of hypertrophic and apoptotic events occurring during rat neonatal heart development and growth. International journal of immunopathology and pharmacology, 18(1), 49-58.
Chavin, K. D., Yang, S., Lin, H. Z., Chatham, J., Chacko, V. P., Hoek, J. B., Lane, M. D., & Diehl, A. M. (1999). Obesity induces expression of uncoupling protein-2 in hepatocytes and promotes liver ATP depletion. Journal of Biological Chemistry, 274, 5692-5700.
Chen, M. R., Lee, Y. J., Hsu, C. H., Kao, H. A., & Huang, F. Y. (1998). Cardiovascular function in young patients with type 1 diabetes mellitus. Acta paediatrica Taiwanica, 40(4), 250-254.
Chen, Y., Wang, Y. Y., Zhang, L. N., Chang, H., Zhang, L., Song, Z., & Yu, Z. B. (2010). Cardiac hypertrophy and changes in contractile function of cardiomyocyte. Acta physiologica Sinica, 62(6), 517-523.
Chimen, M., Kennedy, A., Nirantharakumar, K., Pang, T. T., Andrews, R., & Narendran, P. (2012). What are the health benefits of physical activity in type 1 diabetes mellitus? A literature review. Diabetologia, 55, 542-551.
Clarke, M., Bennett, M., & Littlewood, T. (2007). Cell death in the cardiovascular system. Heart, 93, 659-664.
Cuervo, A. M., Bergamini, E., Brunk, U. T., Dröge, W., Ffrench, M., & Terman, A. (2005). Autophagy and aging: the importance of maintaining" clean" cells. Autophagy, 1, 131-140.
Dabkowski, E.R., Williamson, C.L., Hollander, J.M. (2008) Mitochondria-specific transgenic overexpression of phospholipid hydroperoxide glutathione peroxidase (GPx) attenuates ischemia/reperfusion-associated cardiac dysfunction. Free Radical Biology and Medicine, 45, 855-865
DeBlieux, P. M., Barbee, R. W., McDonough, K. H., & Shepherd, R. E. (1993). Exercise training improves cardiac performance in diabetic rats. Experimental Biology and Medicine, 203(2), 209-213.
Decker, R. S., & Wildenthal, K. (1980). Lysosomal alterations in hypoxic and reoxygenated hearts. I. Ultrastructural and cytochemical changes. The American Journal of Pathology, 98, 425-444.
Deretic, V. (2006). Autophagy as an immune defense mechanism. Current Opinion in Immunology, 18, 375-382.
Devereux, R. B., Roman, M. J., Paranicas, M., O’Grady, M. J., Lee, E. T., Welty, T. K., Fabsitz, R. R., Robbins, D., Rhoades, E. R., & Howard, B. V. (2000). Impact of diabetes on cardiac structure and function the strong heart study. Circulation, 101, 2271-2276.
Dosenko, V. E., Nagibin, V. S., Tumanovska, L. V., & Moibenko, A. A. (2006a). Protective effect of autophagy in anoxia-reoxygenation of isolated cardiomyocyte? Autophagy, 2, 305-306.
Dosenko, V. E., Nagibin, V. S., Tumanovskaya, L. V., Zagoriy, V. Y., Moibenko, A. A., & Vage, J. (2006b). Proteasomal proteolysis in anoxia-reoxygenation, preconditioning and postconditioning of isolated cardiomyocytes. Pathophysiology, 13, 119-125.
Ellison, G. M., Waring, C. D., Vicinanza, C., & Torella, D. (2011). Physiological cardiac remodelling in response to endurance exercise training: cellular and molecular mechanisms. Heart,98, 5-10.
Elmore, S. P., Qian, T., Grissom, S. F., & Lemasters, J. J. (2001). The mitochondrial permeability transition initiates autophagy in rat hepatocytes. The FASEB Journal, 15, 2286-2287.
Ford, E. S., Giles, W. H., & Mokdad, A. H. (2004). Increasing prevalence of the metabolic syndrome among US adults. Diabetes care, 27(10), 2444-2449.
Fortunati, N., Catalano, M., Boccuzzi, G., & Frairia, R. (2010). Sex hormone-binding globulin (shbg), estradiol and breast cancer. Molecular and Cellulr Enocreinology, 316(1), 86-92.
Frasier, C. R., Moore, R. L., & Brown, D. A. (2011). Exercise-induced cardiac preconditioning: how exercise protects your achy-breaky heart. Journal of Applied Physiology, 111(3), 905-915.
French, J. P., Hamilton, K. L., Quindry, J. C., Lee, Y., Upchurch, P. A., & Powers, S. K. (2008). Exercise-induced protection against myocardial apoptosis and necrosis: MnSOD, calcium-handling proteins, and calpain. The Federation of American Societies for Experimental Biology Journal, 22(8), 2862-2871.
Galderisi, M., Anderson, K. M., Wilson, P. W., & Levy, D. (1991). Echocardiographic evidence for the existence of a distinct diabetic cardiomyopathy (the Framingham Heart Study). The American Journal of Cardiology, 68, 85-89.
Gerard, K. W., Hipkiss, A. R., & Schneider, D. L. (1988). Degradation of intracellular protein in muscle. Lysosomal response to modified proteins and chloroquine. Journal of Biological Chemistry, 263(35), 18886-18890.
Golbidi, S., & Laher, I. (2011). Molecular mechanisms in exercise-induced cardioprotection. Cardiology Research and Practice, 2011 ; 2011:972807.
Gottlieb, R. A., Finley, K. D., & Mentzer Jr, R. M. (2009). Cardioprotection requires taking out the trash. Basic Research in Cardiology, 104, 169-180.
Grundy, S. M., Benjamin, I. J., Burke, G. L., Chait, A., Eckel, R. H., Howard, B. V., Mitch, W., Smith, S. C., & Sowers, J. R. (1999). Diabetes and cardiovascular disease: a statement for healthcare professionals from the American Heart Association. Circulation, 100, 1134-1146.
Gump, J. M., & Thorburn, A. (2011). Autophagy and apoptosis: what is the connection? Trends in Cell Biology, 21, 387-392.
Gustafsson, Å. B., & Gottlieb, R. A. (2008). Recycle or die: the role of autophagy in cardioprotection. Journal of Molecular and Cellular Cardiology, 44, 654-661.
Hall, J. L., Sexton, W. L., & Stanley, W. C. (1995). Exercise training attenuates the reduction in myocardial GLUT-4 in diabetic rats. Journal of Applied Physiology, 78(1), 76-81.
Hamacher-Brady, A., Brady, N. R., & Gottlieb, R. A. (2006a). Enhancing macroautophagy protects against ischemia/reperfusion injury in cardiac myocytes. Journal of Biological Chemistry, 281, 29776-29787.
Hamacher-Brady, A., Brady, N. R., Gottlieb, R. A., & Gustafsson, Å. B. (2006b). Autophagy as a protective response to Bnip3-mediated apoptotic signaling in the heart. Autophagy, 2, 307-309.
Hambrecht, R., Fiehn, E., Weigl, C., Gielen, S., Hamann, C., Kaiser, R., Yu, J., Adams, V., Niebauer, J., & Schuler, G. (1998). Regular physical exercise corrects endothelial dysfunction and improves exercise capacity in patients with chronic heart failure. Circulation, 98(24), 2709-2715..
Hamby, R. I., Zoneraich, S., & Sherman, L. (1974). Diabetic cardiomyopathy. Journal of the American Medical Association, 229(13), 1749-1754.
Hawley, J. A. (2004). Exercise as a therapeutic intervention for the prevention and treatment of insulin resistance. Diabetes/metabolism research and reviews, 20(5), 383-393.
Himsworth, H. P. (1936). Diabetes mellitus: its differentiation into insulin-sensitive and insulin-insensitive types. The Lancet, 227(5864), 127-130.
Holloszy, J. O. (1967). Biochemical adaptations in muscle effects of exercise on mitochondrial oxygen uptake and respiratory enzyme activity in skeletal muscle. Journal of Biological Chemistry, 242(9), 2278-2282.
Holloszy, J. O., & Booth, F. W. (1976). Biochemical adaptations to endurance exercise in muscle. Annual review of physiology, 38(1), 273-291.
Hornig, B., Maier, V., & Drexler, H. (1996). Physical training improves endothelial function in patients with chronic heart failure. Circulation, 93(2), 210-214
Kabeya, Y., Mizushima, N., Ueno, T., Yamamoto, A., Kirisako, T., Noda, T., Kominami, E. Ohsumi, Y. & Yoshimori, T. (2000). LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. The European Molecular Biology Organization journal, 19(21), 5720-5728.
Kannel, W. B., & McGee, D. L. (1979). Diabetes and glucose tolerance as risk factors for cardiovascular disease: the Framingham study. Diabetes care, 2(2), 120-126.
Kim, Y., Phan, D., Van Rooij, E., Wang, D. Z., McAnally, J., Qi, X., Richardson, J. A., Hill, J. A., Bassel-Duby, R., & Olson, E. N. (2008). The MEF2D transcription factor mediates stress-dependent cardiac remodeling in mice. The Journal of clinical investigation, 118(1), 124-132.
King, H., Aubert, R. E., & Herman, W. H. (1998). Global burden of diabetes, 1995–2025: prevalence, numerical estimates, and projections. Diabetes care, 21(9), 1414-1431.
Komatsu, M., Waguri, S., Ueno, T., Iwata, J., Murata, S., Tanida, I., Ezaki, J., Mizushma, N., Ohsumi, Y., Uchiyama, Y., Kominami, E., Tanaka, K., & Chiba, T. (2005). Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. The Journal of cell biology, 169(3), 425-434.
Konhilas, J. P., Watson, P. A., Maass, A., Boucek, D. M., Horn, T., Stauffer, B. L., ... & Leinwand, L. A. (2006). Exercise can prevent and reverse the severity of hypertrophic cardiomyopathy. Circulation research, 98(4), 540-548.
Kundu, M., & Thompson, C. B. (2008). Autophagy: basic principles and relevance to disease. Annual Review of Pathology: Mechanisms of Disease, 3, 427-455.
LaPorte, R. E., Dorman, J. S., Tajima, N., Cruickshanks, K. J., Orchard, T. J., Cavender, D. E., Becker, D. J., & Drash, A. L. (1986). Pittsburgh insulin-dependent diabetes mellitus morbidity and mortality study: physical activity and diabetic complications. Pediatrics, 78, 1027-1033.
Lee, Y., Kim, J. H., Hong, Y., Lee, S. R., Chang, K. T., & Hong, Y. (2012). Prophylactic effects of swimming exercise on autophagy-induced muscle atrophy in diabetic rats. Laboratory animal research, 28(3), 171-179.
Levine, B., & Yuan, J. (2005). Autophagy in cell death: an innocent convict ? Journal of Clinical Investigation, 115, 2679-2688.
Like, A. A., Rossini, A. A., Guberski, D. L., Appel, M. C., & Williams, R. M. (1979). Spontaneous diabetes mellitus: reversal and prevention in the BB/W rat with antiserum to rat lymphocytes. Science, 206(4425), 1421-1423.
Lum, J. J., Bauer, D. E., Kong, M., Harris, M. H., Li, C., Lindsten, T., & Thompson, C. B. (2005). Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell, 120, 237-248.
Maritim, A. C., Sanders, R. A., & Watkins, III. J. (2003). Diabetes, oxidative stress, and antioxidants: a review. Journal of biochemical and molecular toxicology, 17(1), 24-38.
Martin, G., Austad, S., Johnson, T., Genetic analysis of ageing: role of oxidative damage and environmental stresses. (1996). Nature Genetics, 13, 25-34.
Miller, T. D., Balady, G. J., & Fletcher, G. F. (1997). Exercise and its role in the prevention and rehabilitation of cardiovascular disease. Annals of Behavioral Medicine, 19(3), 220-229.
Mizushima, N., Levine, B., Cuervo, A. M., & Klionsky, D. J. (2008). Autophagy fights disease through cellular self-digestion. Nature, 451, 1069-1075.
Nakai, A., Yamaguchi, O., Takeda, T., Higuchi, Y., Hikoso, S., Taniike, M., Omiya, S., Mizote, I., Matsumura, Y., Asahi, M., Nishida, K., Hori, M., Mizushima, N., & Otsu, K. (2007). The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress. Nature Medicine, 13, 619-624.
Ogura, Y., Iemitsu, M., Naito, H., Kakigi, R., Kakehashi, C., Maeda, S., & Akema, T. (2011). Single bout of running exercise changes LC3-II expression in rat cardiac muscle. Biochemical and Biophysical Research Communications, 414, 756-760.
Ohsumi, Y. (2001). Molecular dissection of autophagy: two ubiquitin-like systems. Nature Reviews Molecular Cell Biology, 2(3), 211-216.
Opie, L. H., Commerford, P. J., Gersh, B. J. (2006). Controversies in ventricular remodelling. Lancet, 36, 7356-7367.
Orchard, T. J., Costacou, T., Kretowski, A., & Nesto, R. W. (2006). Type 1 diabetes and coronary artery disease. Diabetes Care, 29(11), 2528-2538.
Osborn, B. A., Daar, J. T., Laddaga, R. A., Romano, F. D., & Paulson, D. J. (1997). Exercise training increases sarcolemmal GLUT-4 protein and mRNA content in diabetic heart. Journal of Applied Physiology, 82(3), 828-834.
Piedrahita, J. A., Zhang, S. H., Hagaman, J. R., Oliver, P. M., and Maeda, N. (1992). Generation of mice carrying a mutant apolipoprotein E gene inactivated by gene targeting in embryonic stem cells. Proc Natl Acad, 89, 4471-4475.
Poirier, P., Bogaty, P., Garneau, C., Marois, L., & Dumesnil, J. G. (2001). Diastolic Dysfunction in Normotensive Men with Well-Controlled Type 2 Diabetes Importance of maneuvers in echocardiographic screening for preclinical diabetic cardiomyopathy. Diabetes care, 24(1), 5-10.
Poornima, I. G., Parikh, P., & Shannon, R. P. (2006). Circulation Research, 98, 596-605.
Putt, K. S., Beilman, G. J., & Hergenrother, P. J. (2005). Direct Quantitation of Poly (ADP‐Ribose) Polymerase (PARP) Activity as a Means to Distinguish Necrotic and Apoptotic Death in Cell and Tissue Samples. Chembiochem, 6(1), 53-55.
Pyo, J. O., Yoo, S. M., & Jung, Y. K. (2013). The Interplay between Autophagy and Aging. Diabetes & Metabolism Journal, 37, 333-339.
Radák, Z., Naito, H., Kaneko, T., Tahara, S., Nakamoto, H., Takahashi, R., Cardozo-Pelaez, F., & Goto, S. (2002). Exercise training decreases DNA damage and increases DNA repair and resistance against oxidative stress of proteins in aged rat skeletal muscle. Pflügers Archiv, 445, 273-278.
Radák, Z., Sasvári, M., Nyakas, C., Pucsok, J., Nakamoto, H., & Goto, S. (2000). Exercise preconditioning against hydrogen peroxide-induced oxidative damage in proteins of rat myocardium. Archives of biochemistry and biophysics, 376, 248-251.
Ravikumar, B., Sarkar, S., Davies, J. E., Futter, M., Garcia-Arencibia, M., Green-Thompson, Z. W., Jmenez-Sanchez, M., Korolchuk, V. I., Lichtenberg, M., Luo, S., Massey D. C., Menzies, F. M., Moreau, K., Narayanan, U., Renna, M., Siddiqi, F. H., Underwood, B. R., Winslow, A. R., & Rubinsztein, D. C. (2010). Regulation of mammalian autophagy in physiology and pathophysiology. Physiological Reviews, 90, 1383-1435.
Regan, T. J., Lyons, M. M., Ahmed, S. S., Levinson, G. E., Oldewurtel, H. A., Ahmad, M. R., & Haider, B. (1977). Evidence for cardiomyopathy in familial diabetes mellitus. Journal of Clinical Investigation, 60, 885-889.
Riddell, M. C., & Perkins, B. A. (2006). Type 1 diabetes and vigorous exercise: applications of exercise physiology to patient management. Canadian Journal of Diabetes, 30(1), 63-71.
Rolland, Y., Onder, G., Morley, J. E., Gillette-Guyonet, S., Abellan van Kan, G., & Vellas, B. (2011). Current and future pharmacologic treatment of sarcopenia. Clinics in geriatric medicine, 27(3), 423-447.
Rubinsztein, D. C., Mariño, G., & Kroemer, G. (2011). Autophagy and Aging. Cell, 146, 682-695.
Saengsirisuwan, V., Kinnick, T. R., Schmit, M. B., & Henriksen, E. J. (2001). Interactions of exercise training and lipoic acid on skeletal muscle glucose transport in obese Zucker rats. Journal of Applied Physiology, 91(1), 145-153.
Salminen, A., Hyttinen, J. M., Kauppinen, A., & Karniranta, K. (2012). Context-dependent regulation of autophagy by IKK-NF-κB signaling: Impact on the aging process. International Journal of Cell Biology, 2011, 89, 667–676.
Seneviratne, B. I. (1977). Diabetic cardiomyopathy: the preclinical phase. British Medical Journal, 1, 1444-1446.
Sever, N. (1999). Cardiovascular disease. Novartis Foundation Symposium. 219, 188-206.
Severs, N. (1995). Cardiac muscle cell interaction: From miocroanatomy to the molecular make-up of the gap junction. Histology and Histopathology. 10, 481-501.
Shen, E., Li, Y., Li, Y., Shan, L., Zhu, H., Feng, Q., & Peng, T. (2009). Rac1 is required for cardiomyocyte apoptosis during hyperglycemia. Diabetes, 58(10), 2386-2395.
Shen, X., Zheng, S., Thongboonkerd, V., Xu, M., Pierce, W.M., Jr, Klein J. B., Epstein, P. N. (2004). Cardiac mitochondrial damage and biogenesis in a chronic model of type 1 diabetes. American journal of pathology Endocrinology Metabolism, 287, E896–E905.
Shintani, T., & Klionsky, D. J. (2004). Autophagy in health and disease: a double-edged sword. Science, 306, 990-995.
Song, G. Y., Wang, X. M., Yang, Y. J., Zhang, H. L., Pei, H. J., Zhao, Z. Y., & Wu, Y. J. (2009). Accelerated cardiac remodeling of post-infarction was associated with changes of gene expression profile in untreated streptozotocin-induced diabetic rats. Chinese Journal of Pathophysiology, 25(12), 2302-2309.
Stromhaug, P. E., & Klionsky, D. J. (2001). Approaching the molecular mechanism of autophagy. Traffic, 2, 524-531.
Syrový, I., & Hodný, Z. (1992). Non-enzymatic glycosylation of myosin: effects of diabetes and ageing. General Physiology and Biophysics, 11, 301-307.
Tanaka, K., Kehl, F., Gu, W., Krolikowski, J. G., Pagel, P. S., Warltier, D. C., & Kersten, J. R. (2002). Isoflurane-induced preconditioning is attenuated by diabetes. American Journal of Physiology-Heart and Circulatory Physiology, 282, H2018-H2023.
Tanida, I., Ueno, T., & Kominami, E. (2004). LC3 conjugation system in mammalian autophagy. The international journal of biochemistry & cell biology, 36(12), 2503-2518.
Thompson, P. D. (2003). Exercise and physical activity in the prevention and treatment of atherosclerotic cardiovascular disease. Arteriosclerosis, thrombosis, and vascular biology, 23(8), 1319-1321.
Tiscornia, G., Moretta, R., Argenziano, M., Amorena, C., & Garcia Gras, E. (2012). Inhibition of connexin 43 in cardiac muscle during intense physical exercise. Scandinavian journal of medicine & science in sports. 24(2), 336-344.
Trujillo-Santos, A. J. (2003). Diabetic Muscle Infarction An underdiagnosed complication of long-standing diabetes. Diabetes care, 26(1), 211-215.
Virgin, H. W., & Levine, B. (2009). Autophagy genes in immunity. Nature Immunology, 10, 461-470.
Wang, J. F., Fang, C. Q., Chen, K., Gao, J., & Zhang, G. H. (2010). Value of echocardiography on protective effect of melatonin on diabetic rats heart. Journal of Jiangsu University (Medicine Edition), 3, 009.
Warburton, D. E., Nicol, C. W., & Bredin, S. S. (2006). Health benefits of physical activity: the evidence. Canadian medical association journal, 174(6), 801-809.
Weeks, K. L., McMullen, J. R. (2011). The athlete’s heart vs. the failing heart: can signaling explain the two distinct outcomes? Physiology, 26(2), 97-105.
Xie, Z., Lau, K., Eby, B., Lozano, P., He, C., Pennington, B., Li, H., Rathi, S., Dong, Y., Tian, R., Kem, D., & Zou, M. H. (2011). Diabetes, 60, 1770-1778.
Yan, L., Vatner, D. E., Kim, S. J., Ge, H., Masurekar, M., Massover, W. H., Yan, G., Matsui, Y., Sadoshima, J., & Vatner, S. F. (2005). Autophagy in chronically ischemic myocardium. Proceedings of the National Academy of Sciences of the United States of America, 102, 13807-13812.
Ye, G., Metreveli, N. S., Donthi, R. V., Xia, S., Xu, M., Carlson, E. C., & Epstein, P. N. (2004). Catalase protects cardiomyocyte function in models of type 1 and type 2 diabetes. Diabetes, 53, 1336-1343.
Yoshimori, T. (2004). Autophagy: a regulated bulk degradation process inside cells. Biochemical and biophysical research communications, 313, 453-458.
Young, L. H., Renfu, Y., Russell, R., Hu, X., Caplan, M., Ren, J., Shulman, G. I., & Sinusas, A. J. (1997). Low-flow ischemia leads to translocation of canine heart GLUT-4 and GLUT-1 glucose transporters to the sarcolemma in vivo. Circulation, 95(2), 415-422.
Zhao, Y., Zhang, L., Qiao, Y., Zhou, X., Wu, G., Wang, L., Peng, Y., Dong, X., Huang, H., Si, L., Zhang, X., Zhang, L., Li, J., Wang, W., Zhou, L., & Gao, X. (2013). Heme Oxygenase-1 Prevents Cardiac Dysfunction in Streptozotocin-Diabetic Mice by Reducing Inflammation, Oxidative Stress, Apoptosis and Enhancing Autophagy. PLoS One, 8, 7592-7.
Zhu, H., Tannous, P., Johnstone, J. L., Kong, Y., Shelton, J. M., Richardson, J. A., Le, V., Levine, B., Rothermel, B. A., & Hill, J. A. (2007a). Cardiac autophagy is a maladaptive response to hemodynamic stress. Journal of Clinical Investigation, 117, 1782-1793.
Zhu, H., Tannous, P., Johnstone, J. L., Kong, Y., Shelton, J. M., Richardson, J. A., Le, V., Levine, B., Rothermel, B. A., & Hill, J. A. (2007b). Intracellular protein aggregation is a proximal trigger of cardiomyocyte autophagy. Circulation, 117(24), 3070-3078.
全文
校內電子全文開放日期:2018.07.03
校外電子全文開放日期:2018.07.03
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *